Classification of the extremal formally self-dual even codes of length 30
نویسندگان
چکیده
Throughout this paper all codes are assumed to be binary. A linear code C is formally self-dual (fsd) if C and its dual C have the same weight enumerator. While self-dual codes contain only even weight vectors, formally self-dual codes may contain odd weight codewords as well. Many authors consider only even formally self-dual codes because their weight enumerators are combinations of Gleason polynomials. An fsd binary code is even if and only if it contains the all-one vector 1 [8]. Binary codes, containing the all-one vector, are called self-complementary, because if x is a codeword of such a code, its complementary vector x = 1+x is a codeword, too. Thus a formally self-dual code is even if and only if it is self-complementary. Gleason’s theorem applied to an even formally self-dual code C of length n gives
منابع مشابه
Nonexistence of near-extremal formally self-dual even codes of length divisible by 8
It is a well known fact that if C is an [n, k, d] formally self-dual even code with n > 30, then d ≤ 2[n/8]. A formally self-dual even code with d = 2[n/8] is called nearextremal. Kim and Pless [9] conjecture that there does not exist a near-extremal formally self dual even (not Type II) code of length n ≥ 48 with 8|n. In this paper, we prove that if n ≥ 72 and 8|n, then there is no near-extrem...
متن کاملBinary extremal self-dual codes of length 60 and related codes
We give a classification of four-circulant singly even self-dual [60, 30, d] codes for d = 10 and 12. These codes are used to construct extremal singly even self-dual [60, 30, 12] codes with weight enumerator for which no extremal singly even self-dual code was previously known to exist. From extremal singly even self-dual [60, 30, 12] codes, we also construct extremal singly even self-dual [58...
متن کاملThe nonexistence of near-extremal formally self-dual codes
A code C is called formally self-dual if C and C⊥ have the same weight enumerators. There are four types of nontrivial divisible formally self-dual codes over F2, F3, and F4. These codes are called extremal if their minimum distances achieve the MallowsSloane bound. S. Zhang gave possible lengths for which extremal self-dual codes do not exist. In this paper, we define near-extremal formally se...
متن کاملA note on formally self-dual even codes of length divisible by 8
A binary code with the same weight distribution as its dual code is called formally self-dual (f.s.d.). We only consider f.s.d. even codes (codes with only even weight codewords). We show that any formally self-dual even binary code C of length n not divisible by 8 is balanced. We show that the weight distribution of a balanced near-extremal f.s.d. even code of length a multiple of 8 is unique....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. in Math. of Comm.
دوره 4 شماره
صفحات -
تاریخ انتشار 2010